Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(2): 353-360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191933

RESUMO

The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.


Assuntos
Neurônios , Sinapses , Animais , Camundongos , Sinapses/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Células Cultivadas , Corantes , Plasticidade Neuronal
2.
Sci Adv ; 9(23): eade5973, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294752

RESUMO

Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.


Assuntos
Espinhas Dendríticas , Esquizofrenia , Humanos , Camundongos , Animais , Espinhas Dendríticas/fisiologia , Neurônios/fisiologia , Encéfalo , Memória de Curto Prazo/fisiologia , Esquizofrenia/patologia
3.
Nat Commun ; 13(1): 7692, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509775

RESUMO

Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.


Assuntos
Corpo Celular , Neurônios , Animais , Camundongos , Neurônios/metabolismo , Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Cálcio/metabolismo
4.
Redox Biol ; 45: 102057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34198071

RESUMO

Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(-)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(-) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(-) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(-) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC.


Assuntos
Lactoilglutationa Liase , Esquizofrenia , Deficiência de Vitamina B 6 , Animais , Humanos , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética
5.
STAR Protoc ; 2(2): 100469, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33937875

RESUMO

Here, we present a comprehensive protocol to analyze the roles of disease-related genes in synaptic transmission. We have developed a pipeline of electrophysiological techniques and combined these with optogenetics in the medial prefrontal cortex of mice. This methodology provides a cost-effective, faster, and easier screening approach to elucidate functional aspects of single genes in several regions in the mouse brain such as a specific layer of the mPFC. For complete details on the use and execution of this protocol, please refer to Nagahama et al. (2020) and Sacai et al. (2020).


Assuntos
Vias Neurais/metabolismo , Optogenética , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Transmissão Sináptica , Animais , Camundongos
6.
Nat Commun ; 11(1): 5140, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046712

RESUMO

Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/psicologia , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica
7.
Cell Rep ; 32(11): 108126, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937141

RESUMO

SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.


Assuntos
Comportamento Animal , Histona-Lisina N-Metiltransferase/deficiência , Esquizofrenia/fisiopatologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/metabolismo , Esquizofrenia/genética , Comportamento Social
8.
Transl Psychiatry ; 10(1): 35, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066675

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is associated with an increased risk for psychiatric disorders. Although most of the 22q11.2DS patients have a 3.0-Mb deletion, existing mouse models only mimic a minor mutation of 22q11.2DS, a 1.5-Mb deletion. The role of the genes existing outside the 1.5-Mb deletion in psychiatric symptoms of 22q11.2DS is unclear. In this study, we generated a mouse model that reproduced the 3.0-Mb deletion of the 22q11.2DS (Del(3.0 Mb)/ +) using the CRISPR/Cas9 system. Ethological and physiological phenotypes of adult male mutants were comprehensively evaluated by visual-evoked potentials, circadian behavioral rhythm, and a series of behavioral tests, such as measurement of locomotor activity, prepulse inhibition, fear-conditioning memory, and visual discrimination learning. As a result, Del(3.0 Mb)/ + mice showed reduction of auditory prepulse inhibition and attenuated cue-dependent fear memory, which is consistent with the phenotypes of existing 22q11.2DS models. In addition, Del(3.0 Mb)/ + mice displayed an impaired early visual processing that is commonly seen in patients with schizophrenia. Meanwhile, unlike the existing models, Del(3.0 Mb)/ + mice exhibited hypoactivity over several behavioral tests, possibly reflecting the fatigability of 22q11.2DS patients. Lastly, Del(3.0 Mb)/ + mice displayed a faster adaptation to experimental jet lag as compared with wild-type mice. Our results support the validity of Del(3.0 Mb)/ + mice as a schizophrenia animal model and suggest that our mouse model is a useful resource to understand pathogenic mechanisms of schizophrenia and other psychiatric disorders associated with 22q11.2DS.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Adulto , Animais , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Humanos , Masculino , Memória , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA